数字电路和线性(模拟)电路可能是电子电路中最明显的分界线。从真空管到晶体管,再到集成电路,基于开关(二进制和数字信号)和放大(模拟信号)的电路一直是电子系统的核心。尽管电子技术使我们的世界变得更加数字化,但现实世界仍然顽固地保留着模拟信号。用于连接传感器和驱动执行器、放大(微弱)模拟信号、通过模拟信号处理操纵这些信号,以及最终将其转换为数字域和反之亦然的电路,过去、现在和将来都是电路设计的基础研究和开发领域。
由于该领域范围广泛,从射频电路、电源管理、基准生成、滤波器设计、振荡器到比较器和其他非线性电路,不一而足,一篇简短的评论文章显然不可能提及所有主题,更不用说涵盖所有主题了。因此,我们做出了选择。本文从放大器开始,因为放大器是决定系统性能的关键模拟构件之一。
我们简要回顾了基于集成电路的放大器的早期发展,以及放大器设计中一些杰出的电路创新。随后,我们重点介绍 ADC 的历史和技术现状、其架构以及四十年来的效率改进。最后,我们回顾了传感器接口,首先重点介绍了传感器接口的历史和各种传感器模式的技术现状,其次重点介绍了神经放大器背景下用于生物电位记录的生物医学接口电路。
放大器是所有模拟电路的基石,因为它们用于信号调节和处理、低噪声应用、ADC 等。虽然第一个基于集成电路的运算放大器(OA)--Widlar 的 ?A702 已经有两级,但无处不在的 ?A741 却成为早期基于 PCB 设计的主力。它有两个级,一个差分输入级和一个 AB 类输出级。如图 1 所示,其 CMOS 等效器件仍在使用,但通常用 CMOS 反相器取代信号路径中的单晶体管。
放大器是全差分的,因此需要一个共模回馈电路。米勒补偿电容器 (CM:Miller compensation capacitor) 设定放大器的 GBW 乘积,并确保相位裕度。斩波用于减轻偏移和 1/f 噪声。然而,这种经典设计的功率效率很低。因此,在过去几十年中,为了降低达到给定速度所需的功率,人们提出了许多其他设计,如前馈、多级、正反馈和动态架构。
使用单级绕过双级放大器称为前馈,而使用双级放大器绕过单级放大器称为增益增强。不过,这两个术语描述的电路基本相同!前馈引入了一个左平面零点(left-plane zero),通过抵消一个非显性极点来确保稳定性 。与米勒补偿相比,前馈放大器的效率可轻松提高两到三倍。
使用负阻抗或正反馈可以实现更高的效率。负电容用于扩展射频放大器的带宽由来已久,而负电阻则被用于 OA。如图 2 所示,将负电阻(M3 , M4)连接到输入对(M1, M2)的源极,可在功耗相同的情况下增加跨导和 GBW 。负电阻也可以连接到对称或负载补偿放大器输入级的负载上 [5]。它们还可用于抵消偏移和增益不足,因此是高性能放大器的推荐构件。
多级放大器还能大大降低功率。在放大器中,第二级用于创建零点,对非主极点进行补偿。图 3 中的放大器[7]实现了二阶极点-零点补偿:跨导值 gmt 通常是 gm2 的两到三倍。因此,在降低第二级功耗的同时,仍可获得比传统嵌套式米勒放大器大约 40 倍的 GBW,从而实现放大器 FOM . 四级放大器中间级更复杂的有源滤波器可产生更惊人的 FOM = 96,000 MHz $ pF/mA 。
在采样数据系统中,使用动态放大器具有优势,因为它们只允许使用所需的带宽,从而在给定噪声要求下最大限度地降低功耗。如图 4 所示,通常使用相同的电路配置,也在所有偏置分支中使用开关。另一种类型是浮动逆变器动态放大器,在这种放大器中,切换的是叠加电压而不是放大器。这样就能以有限的功耗提供适当的偏置。
通过使用更高效(如 AB 类)的放大器拓扑结构,还能进一步节省大量功耗。此外,C 类和环形振荡器放大器也能提供更好的功耗节省。尤其是 D 类放大器,其输出设备在高频率下切换,可以在极低的失线% 的功率效率,通常用于音频应用中。
放大器的这些创新模糊了数字和模拟电路实施之间的界限,这就引出了本简要评论的第二个主题,即模拟数字接口,即数据转换器。数据转换器是模拟信号链中的最后一个或第一个环节,具体取决于信号流程。 尽管 DAC 在电子系统中也发挥着重要作用,但由于 ADC 种类更多,知名度更高,而且几乎所有 ADC 也都采用了内部 DAC,因此我们仅对 ADC 进行简要的历史回顾。由此,我们可以窥见自集成 ADC 首次出现以来 40 多年的结构创新和性能演变。Walt Kester 撰写了一本非常完整的手册,其中包括对数据转换器的大量历史概述,感兴趣的读者可参阅。
早在集成电路出现之前,人们就对量化和 ADC 的基本原理进行了探索、研究、申请专利和出版著作。其中最著名的作品有 Howard 提出的跟踪 ADC 、Inose 提出的三角积分调制器 (DSM) ,以及 Kaiser 的 SAR ADC 。
然而,在第一批集成电路出现一、二十年前,就有人提出了闪存、子量程、流水线、计数、斜率、电压-频率转换和其他 ADC 架构。这些早期的实现都基于线 年重新租用的第一个商用 SAR ADC),而在集成电路发明之后,这些实现都基于分立晶体管。但直到 20 世纪 70 年代初,才出现了基于集成电路构件的混合式和模块化 ADC,以及完全集成的数据转换器。
20 世纪 80 年代是许多应用高速发展的时代,1988 年出现了第一个商用单片 16-b DSM。数据表上开始出现更详细的规格,如 SNR、SNDR、ENOB、SFDR、孔径抖动等。虽然集成电路技术的改进以及电路和系统研究主要决定了技术的进步,但新的独特原理仍在不断被发现。例如,时间间隔 ADC 的概念于 1980 年提出,而增量、MASH 和带通 DSM 则是在 20 世纪 80 年代末发表的。将不同的 ADC 原理组合成创新的混合形式至今仍在推动创新,例如在流水线 ADC 或 DSM 中使用 SAR 或使用基于 VCO 的量化器并将其纳入 DSM 。此外,使用 DSP 来纠正模拟电路的非理想性现在已无处不在。
随着时间的推移,已有数以千计的 ADC 设计问世,因此对其性能进行综合分析已成为一个备受关注的课题。模数转换器可能是所有电路构件中最完善的,其 FOM 是最重要的。最常用的两种方法是 1994 年提出的 Walden FOMW ,以及 Richard Schreier 于 2005 年描述的 Schreier FOMS ,但这其实早在 1997 年就已提出。如今,Boris Murmann 的性能调查涵盖了自 1998 年以来所有 IEEE 国际固态电路会议 (ISSCC) 和 IEEE 超大规模集成电路技术和电路研讨会的结果,几乎被所有数据转换器出版物普遍引用。图 5 显示了过去 40 年中报告的最佳 FOMW。
令人惊叹的是,由于技术升级和电路创新,40 年来报告的最佳 ADC 效率几乎提高了六个数量级。然而,最佳报告的 FOMW 似乎已经饱和,我们也可以预见,创纪录的 FOMS 也将很快跟进。仔细观察数据可以发现,最佳 FOMS 是在有限的几类架构中获得的:中等分辨率/速度 SAR 获得了最佳 FOMW,而高分辨率低带宽噪声整形 SAR 和混合 SAR + DSM ADC 获得了最佳 FOMS。这强调了一个事实,即单一数字并不能说明全部问题,因此应在相同应用的 ADC 之间进行 FOM 比较。
此外,在报告 FOMS 时,校准引擎、抽取滤波器以及输入和参考缓冲器所消耗的功率往往被忽略。幸运的是,数据转换器界对此有很好的理解,因此人们越来越关注转换器的易驱动性、隐式滤波、更好的免校准线性度等,而不仅仅是创下新的 FOM 记录。
首先,SAR ADC(主要由其在按比例 CMOS 中的卓越效率驱动)已变得无处不在,从最高能效到最快速度的时间交错 ADC 都能找到它的身影;噪声和失配误差整形的使用模糊了与 DSM 的区别,在最新技术水平中,它们通常被用作 DSM 循环的量化器。
其次,可以找到带宽惊人的 DSM,尤其是基于 CT 环路滤波器的 DSM,它们具有固有滤波功能,更易于驱动,带宽达数百兆赫兹,线 dB。随着带宽的扩大和孔径不确定性的显著改善,奈奎斯特 ADC 的带宽已达数百兆赫兹,分辨率超过 10 b。
最后,基于时间的量化技术得益于技术的扩展,目前已成为低(或中)分辨率 ADC 或作为高分辨率 ADC 一部分的最节省面积的解决方案。
过去几十年来,直接与传感器和感应器连接的 ADC 越来越受到关注。由此,我们进入了智能传感器接口领域。如今,传感器遍布我们的家庭、汽车和手机。这些传感器大多是 智能 的,因为它们与放大、线性化和将微弱的模拟输出转换为稳定的数字数据所需的所有接口电路集成在一起。通过巧妙地利用硅的特性,智能传感器可以测量各种物理现象,如光、力、热和磁场等。
晶体管和集成电路的发明促进了对半导体特性的广泛研究。人们很快发现,半导体不仅可以用来制造电路,还可以用来制造传感器。20 世纪 60 年代,压力、应力、温度和磁场传感器在 ISSCC 上发表了报告。随后是图像传感器,从 CCD 开始,随后是 CMOS 图像传感器,CMOS 因其较低的制造成本而成为主流技术。人们还发现,BJT 的明确特性可用于实现精确的电压基准和温度传感器。另一项重大发展是利用微加工技术制造微机电系统 。这迅速实现了带有移动部件的传感器,如压力传感器、加速度计和陀螺仪。
早期的硅传感器通常输出较小的模拟信号,然后由外部电子设备进行放大、处理和数字化。但到了 20 世纪 70 年代,单片放大器的出现意味着放大和滤波可以在芯片上完成。最初,微调 BJT 放大器用于实现低偏移和 1/f 噪声。很快,动态误差减少技术(如斩波和自动归零)的使用使 CMOS 放大器也能实现类似的性能。此外,通过使用 DEM,增益(或比率)误差可降低到 ppm 级。这些技术的各种组合,如自动归零和斩波、嵌套斩波(nested chopping)以及 DEM 和斩波],使得放大器具有纳伏级偏移和 ppm 级增益误差/线性度。
智能传感器发展的下一步是开发与外界连接的强大接口。20 世纪 80 年代,传感器通常采用频率和占空比调制器。通过对两电平信号转换时序中的模拟信息进行编码,此类调制器可以输出与微处理器兼容的信号,而不会限制传感器的分辨率。然而,随后转换为高分辨率数字数据需要一个低抖动的高频参考时钟。此外,由于没有标准化,因此每个传感器都需要自己特定的信号链。
随着单片 ADC,特别是 DSM 的发展,这一切都发生了改变。后者能够以速度换分辨率,这意味着传感器相对较慢的输出可以在芯片上进行数字化,而不会限制其分辨率。反过来,芯片数字化又使智能传感器能够通过标准数字总线和协议与外界通信。这使它们更易于使用,并使它们能够作为具有明确规格的独立构件在市场上销售。此外,它还使大部分所需的片上信号处理(滤波、微调和线性化)能够在数字域中灵活、精确地完成。
为了降低成本,人们致力于开发与 CMOS 兼容的传感器,这些传感器可以与其接口电子器件集成在同一芯片上。然而,除了一些例外情况(热传感器和磁场传感器),这种方法对传感器的性能造成了太多限制。如今,大多数智能传感器都采用双芯片方法,即在一个芯片(或基板)上采用优化的制造工艺实现传感器,而在另一个芯片上实现 CMOS 接口。这种方法还有利于在单个封装中集成多个传感器(见图 6)。
在传感器和电路创新的推动。