说明模拟IC对电源变化灵敏度的传统参数是电源抑制比(PSRR)。对于放大器,PSRR是输出电压变化与电源电压变化之比,用比率(PSRR)或dB (PSR)表示。PSRR可折合到输出端(RTO)或输入端(RTI)。RTI值等于RTO值除以放大器增益。
图1显示典型高性能放大器(AD8099) PSR随频率、以大约6 dB/8倍频程(20 dB/10倍频程)下降的情况。图中显示了采用正负电源两种情况下的曲线图。尽管PSR在直流下是90 dB,但较高频率下会迅速降低,此时电源线路上有越来越多的无用能量会直接耦合至输出。因此必须一开始就要防止此高频能量进入芯片。一般通过组合电解电容(用于低频去耦)、陶瓷电容(用于高频去耦)来完成,也有可能使用铁氧体磁珠。
数据转换器以及其他模拟和混合信号电路的电源抑制可能在数据手册中都有相关规定。不过,在数据手册的应用部分,经常会针对几乎所有的线性和混合信号IC推荐电源去耦电路。用户应始终遵循这些建议,以确保器件正常工作。
低频噪声需要较大的电解电容,用作瞬态电流的电荷库。将低电感表面贴装陶瓷电容直接连接到IC电源引脚,便可最大程度地抑制高频电源噪声。所有去耦电容必须直接连接到低电感接地层才有效。此连接需要短走线或过孔,以便将额外串联电感降至最低。
铁氧体磁珠(以镍、锌、锰的氧化物或其他化合物制造的绝缘陶瓷)也可用于在电源滤波器中去耦。铁氧体在低频下(100 kHz)为感性,因此对低通LC滤波器有用。100 kHz以上,铁氧体成阻性(高Q)。铁氧体阻抗与材料、工作频率范围、直流偏置电流、匝数、尺寸、形状和温度成函数关系。
铁氧体磁珠并非始终必要,但可以增强高频噪声隔离和去耦,通常较为有利。这里可能需要验证磁珠永远不会饱和,特别是在运算放大器驱动高输出电流时。当铁氧体饱和时,它就会变为非线性,失去滤波特性。
请注意,某些铁氧体甚至可能在完全饱和前就是非线性。因此,如果需要功率级,以低失真输出工作,当原型在此饱和区域附近工作时,应检查其中的铁氧体。
图3显示了一个非理想电容的模型。电阻RP代表绝缘电阻或泄漏,与标称电容C并联。第二个电阻RS(等效串联电阻或ESR)与电容串联,代表电容引脚和电容板的电阻。
电感L(等效串联电感或ESL)代表引脚和电容板的电感。最后,电阻RDA和电容CDA一起构成称为电介质吸收或DA现象的简化模型。在采样保持放大器(SHA)之类精密应用中使用电容时,DA可造成误差。但在去耦应用中,电容的DA一般不重要。
图4显示了各种100 F电容的频率响应。理论上,电容阻抗将随着频率增加呈单调下降。实际操作中,ESR使阻抗曲线变得平坦。随着频率不断升高,阻抗由于电容的ESL而开始上升。“膝部”的位置和宽度将随着电容结构、电介质和等效器件的值而变化。因此常常可以看到较大值电容与较小值电容并联。较小值电容通常具有较低ESL,与较高频率的电容看似相同。这可以在更宽频率范围内扩展并联组合的总体性能。
电容自谐振频率就是电容电抗(1/C)等于ESL电抗(ESL)的频率。对这一谐振频率等式求解得到下式:
所有电容将显示大致形状与图示类似的阻抗曲线。虽然实际曲线图有所不同,但大致形状相同。最小阻抗由ESR决定,高频区域由ESL决定(后者很大程度上受封装样式影响)。
图5显示适合去耦的各种常见电容类型。电解系列具有宽值范围、高电容体积比和广泛的工作电压,是极佳的高性价比低频滤波器元件。它包括通用铝电解开关类型,提供10 V以下直至约500 V的工作电压,尺寸为1 F至数千F(以及成比例的外形尺寸)。
所有电解电容均有极性,因此无法耐受约一伏以上的反向偏置电压而不造成损坏。此类器件具有相对较高的泄漏电流(可能为数十A),很大程度上取决于特定系列的设计、电气尺寸、额定电压及施加电压。不过,泄漏电流不可能是基本去耦应用的主要因素。
大多数去耦应用不建议使用“通用”铝电解电容。不过,铝电解电容的一个子集是“开关型”,设计并规定用于在最高达数百kHz的频率下处理高脉冲电流,且仅具有低损耗。此类电容在高频滤波应用中可直接媲美固态钽电容,且具有更广泛的可用值。
固态钽电解电容一般限于50 V或更低的电压,电容为500 F或更低。对于给定尺寸,钽电容比铝开关电解电容呈现出更高的电容体积比,且具有更高的频率范围和更低的ESR。一般也比铝电解电容更昂贵,对于浪涌和纹波电流,必须谨慎处理应用。
最近,使用有机或聚合物电解质的高性能铝电解电容也已问世。这些电容系列拥有略低于其他电解类型的ESR和更高的频率范围,另外低温ESR下降也最小。此类器件使用铝聚合物、特殊聚合物、Poscap和Os-Con等标签。
陶瓷或多层陶瓷(MLCC)具有尺寸紧凑和低损耗特性,通常是数MHz以上的首选电容材料。不过,陶瓷电介质特性相差很大。对于电源去耦应用,一些类型优于其他类型。在X7R的高K电介质公式中,陶瓷电介质电容的值最高可达数F。在高达200 V的额定电压下推荐Z5U和Y5V。X7R型在直流偏置电压下的电容变化小于Z5U和Y5V型,因此是较佳选择。
NP0(也称为COG)型使用更低的介电常数公式,通常具有零TC和低电压系数(不同于较不稳定的高K型)。NP0型的可用值限于0.1 F或更低,0.01 F是更实用的上限值。
多层陶瓷(MLCC)表面贴装电容的极低电感设计可提供近乎最佳的RF旁路,因此越来越频繁地用于10 MHz或更高频率下的旁路和滤波。更小的陶瓷芯片电容工作频率范围可达1 GHz。对于高频应用中的这些及其他电容,可通过选择自谐振频率高于最高目标频率的电容,确保有效值。
薄膜型电容一般使用绕线,增加了电感,因此不适合电源去耦应用。此类型更常用于音频应用,此时需要极低电容和电压系数。
图6显示了高频去耦电容必须尽可能靠近芯片的情况。否则,连接走线的电感将对去耦的有效性产生不利影响。
左图中,电源引脚和接地连接尽可能短,所以是最有效的配置。然而右图中,PCB走线内的额外电感和电阻将造成去耦方案的有效性降低,且增加封闭环路可能造成干扰问题。
许多去耦应用中,电感或铁氧体磁珠与去耦电容串联,如图7所示。电感L与去耦电容C串联后构成谐振或“调谐”电路,主要特性是显示谐振频率下的显著阻抗变化。谐振频率计算公式如下:
去耦网络的总体阻抗在谐振频率下可表现出峰化现象。峰化程度取决于调谐电路的相对Q(品质因子)值。谐振电路的Q衡量其对电阻的电抗。计算公式如下:
正常走线 F的典型去耦电容将在高于数MHz的频率下产生谐振。例如,0.1 F和1 nH将在16 MHz下产生谐振。
不过,由100 F电容和1 F电感组成的去耦网络在16 kHz下产生谐振。如果不予检查,一旦此频率出现在电源线路上,可带来谐振问题。该效应可通过降低电路Q降至最低。在电源线路内靠近IC的地方插入小电阻(~10 )便可轻松完成,如右例所示。电阻应尽可能压低,最大程度地减小电阻两端的IR压降。也可用小铁氧体磁珠替代电阻,它在谐振频率下主要表现为阻性。
使用铁氧体磁珠代替电感可以减少谐振问题,因为铁氧体磁珠在100 kHz以上表现为阻性,所以会降低电路的有效Q值。典型铁氧体磁珠阻抗如图8所示。
图11显示1.5 GHz高速电流反馈运算放大器AD8000的脉冲响应。两种示波器图表均使用评估板获得。左侧走线显示正确去耦的响应,右侧走线显示同一电路板上去除去耦电容后的相同响应。两种情况中,输出负载均为100 。
图12显示AD8000的PSRR,它与频率成函数关系。请注意,较高频率下PSRR下降至相对较低值。这意味着电源线路上的信号很容易传播至输出电路。图13显示用于测量AD8000 PSRR的电路。
现在考察正确及错误去耦对14位、105/125MSPS高性能数据转换器ADC AD9445的影响。虽然转换器通常无PSRR规格,但正确去耦仍非常重要。图14显示正确设计电路的FFT输出。这种情况下,对AD9445使用评估板。注意频谱较为干净。
AD9445的引脚排列如图15所示。请注意,电源和接地引脚有多个。这是为了降低电源阻抗(并联引脚)。
图16显示了从模拟电源去除去耦电容后的频谱。请注意,高频杂散信号增加了,还出现了一些交调产物(低频成分)。
图17显示从数字电源去除去耦电容的结果。注意杂散同样增加了。另外应注意杂散的频率分布。这些杂散不仅出现在高频下,而且跨越整个频谱。本实验使用转换器的LVDS版本进行。